

Czech Technical University in Prague

Dept. of Mechanics, Biomechanics and Mechatronics

PragTic

Use of Finite Element Analysis Data in Fatigue Analyses

Jan Papuga

Software PragTic

- Started as a support tool for preparation of my PhD thesis
- Present focus: research tool usable for fatigue computation
- Freeware (<u>www.pragtic.com</u>)
- MS Windows based
- English interface only
- v.0.2beta v.0.2betaD

 development sponsored

 by Evektor
- Previous versions
 sponsored by CTU in
 Prague

PragTic Features

- Works on data
 - of FE-model
 - at isolated points with no relation to any FE-model (strain gauges)
- Own database of all data processed
- Preparation and analysis of loading by more load channels
- Easy to use graphical interface
- Complex setup of calculation methods
- Unique coverage of multiaxial methods
- Approx. 20 high-cycle and 10 low-cycle fatigue computation methods

Fatigue Calculation on FE-Model

Essentials

FEM-Model Requirements

- Adequately detailed mesh around the critical localities
- Use the submodel of the critical place if available
- Some rough rules:
 - A quarter of circle ~ 5 elements
 - Avoid linear tetrahedrons
 - At least three elements over the thickness, otherwise shells

Load	Decrease of fatigue life		
increase	ČSN 41 1523.1	AISI 4340	7175-T37511
0%	100%	100%	100%
2%	66%	67%	82%
5%	36%	38%	62%
10%	13%	17%	39%

Use of Result Data – Part I

- Results can be printout at
 - nodes of elements
 - can be significantly discontinuous (coarse meshes)
 - the measure of conservativeness can be doubtful
 - integration points
 - the only "exact" values
 - nodes as averaged value
 - smooth in comparison to nodes of elements
 - the same results on edges
 - element centroids
 - used e.g. in FemFat on shell elements and welds (the load values on edges are not decisive structural stresses)

- more points to be analyzed
- much slower calculation

Use of Result Data – Part II

■ Shell elements

- obvious demand by the most of industrial partners (automotive, airplane, transport, etc. industry)
- further complication as regards listing results on top and bottom sides
- questionable results at typical crack initiation areas junctions, toes, etc.
 - these localities are moreover often affected by welds
 - use of results at element centroids should be preferred

■ Bar elements?

- does the computation make sense?
- description of potential notches on elements close to zero (if not input e.g. in the fatigue post-processor)
- notches at junctions are not described in acceptable detail

Data Import to PragTic

■ FE-data

- commonly formatted (rows & columns) ASCII file (solid elements only)
- MSC.Nastran (*.nas/*.dat files topology, *.pch FE-results)
- ABAQUS (ASCII file *.fil) suspended at present (is there anybody to sponsor it?)

Isolated points

- direct input through the PragTic's interface expected
- possibility to import as a commonly formatted ASCII file

Other entities

load regimes, calculation methods – possibility to read data from other
 PragTic's tasks

Example of ANSYS Input

FE-Model Description

- Topology data
 - Node description (ID, coordinates)
 - Element description

 - Related material
 - Related element group
 - Related real constants
 - Related coordinate systems (definition, output)
 - Related nodes (element table of incidencies)
- Result data

Data Structure of Tasks in PragTic

- hard-disc representation
 - *.fdb file with description of the task (data_base)
 - directory * (the same name as the task) full with binary files of individual items in the data_base (data_vectors)
 - each file consists of data of uniform type and length
- memory representation
 - data_base specialized data_vector describing complete content of the task
 - data_vector
 - class build around the data read from files
 - data are cached, read only their part, not the whole file
- PragTic interface representation

Interface

Interface II – Popup Menu

When complete:

New
View
View On Set...
Edit
Import
Remove
Delete

ASCII Export
Neutral File Export
Average To Nodes
Scale By

Ansys Export

- Opened by a click on the right mouse button
- Differs for various selected items
- **Remove** command
 - removes the data_vector from the task, but leaves the file representation on the harddisc
- Delete command
 - removes also the file
- **Note:** Some data_vector serve as a synergic part of another data_vector you will be warned that the delete/removal is forbidden

Interface III

Data Items Differentiation

- Each data_vector has a header at its beginning, where are among others data on:
 - Its meaning (e.g. Stress, Strain, Nodes, etc.)
 - Related location (e.g. variable described at element centroids)
 - Number of items, dimension of one item
 - Related sets (e.g. nodal)

View / Edit Window – Type I

- Description of elements, nodes, isolated points, sets, results, loads
- Use of clipboard enabled
 - Ctrl+C (or the command from the right-hand click menu) for View mode
 - Ctrl+V (or the command from the right-hand click menu) for Edit mode
- Fast ASCII Copy copies whole content of the table to a file, using the tabulators and enters as separators
- **Filter** see its strength on the next slide

View / Edit Window – Type I Filter

- Filtering can be used in a consecutive series
- Leaves only data
 - belonging to specified set
 - with specific values in the chosen column

View / Edit Window – Type II

- no command *Back* or *Undo*, every *Save* is final
- not Saved changes can be returned back by the Skip
- Changing the ID-name to a new one and save is not equal to rename but to a copy to a new item

individual items

edition of each item in the data_vector (load regimes here) has to be finished by *Save* if you want to continue to another one

View / Edit Window - Type II

- Popup-menu enabled only for Edit mode
- Some items in the Command menu enabled also in View mode
- Reorder: Currently enabled only for Load Regimes and Setups of Analyses

View / Edit Window – Type II

- Apply to set button
 - Enables correction of FE-model properties, if they were inadequaely imported to PragTic

Loads Description

- Load Regime (LOAD_REG)
 - a combination of all entities necessary for creation of local load histories
 - extern load history + FE-results file + knowledge of load applied to the FE-model
 - local load history in hte FE-result file = transient analysis
- extern loads (Hooke)
 - math formula
 - load by data sequence
 - load spectrum / rain-flow matrix
- transient analysis (no Hooke)
 - local load history read from FE-solver (ABAQUS)
 - In preparation: buildup of transient analysis from a sequence of FE-results

Loading

Linear FEA

- The individual load channels can be combined by simple superposition
- If the resulting loads pass over the yield limit, some kind of reduction to elastic-plastic value can be necessary

Non-linear FEA

- No superposition allowed
- More challenging way due to necessity to include all the interacting channels and contacts into one model

Load History Definition

- Transient analysis local loads over the structure
- History of the acting load must be in a known relation to the load acting on the FE-model
 - real record (time force)
 - mathematical formulation
 - load spectrum (upper force lower force occurence)
 - load spectra as e.g. required by standards
 - rain-flow matrices

Load Input to PragTic

- Use of the **Import** function from the main menu
- Creation in PragTic (New command at the right-hand click menu opened on Time Scales, Load Sequencies and Load Spectra)
 - direct editing
 - use of Copy and
 Paste function
 (Ctrl+V) at the void
 cells of Edit window
 be sure that the
 size of the clipboard
 and the edit window
 coincide

Load Scaling

- Optimum setup:
 - ■FEA solution for unit load (e.g. 1 N, 1 kN, etc. something with what can be easily worked further)
 - FEA result input for a desired load
 - e.g. the load equal to the load amplitude
 - not so handy for further modifications

Check before any calculation that the M.Ps. are defined for all materials included into the selected calculation scope

Transient Analysis

- Local load history built for cases, where the linear Hooke's law is not valid
- Two ways of creation
 - local load history recorded for each node/element (FE-postprocessor builds the transient analysis)
 - set of results at different times chained together (fatigue solver builds the transient analysis)

Transient S-E Tensor Pairs (SET_Pair item) are placed to the **Results** / **FEA Results** groups and not to **Loads**

Material Parameters (MATERIAL)

Even a complete import of the FE-model e.g. from *.nas file provides only several static parameters

- Material definition common also with Isolated Points – it should precede before their definition
- Material parameters definition opened from:
 - MATERIAL ID-name of data_vector
 - 2. Material item of the main menu
- Some material parameters preset in dependency on the chosen material group
- Note: Use of a decimal comma or dot depends on your local Windows setup

Eventual Setup of Material Parameters

- Use the Methods dialogue
- You are not defining the setup of methods, i.e. Methods can be opened even in the otherwise passive View mode
- You can see much more efficiently, which material parameters you really need
 - in order to get to results
- Any your change of a table cell starts a dialogue asking whether to save your input into the Material data_vector

Setup of Calculation Methods

(METHODS)

Properties of Structure (LOCPROP)

- The dialogue covers facts on the specimens that are included neither in the FE-model nor in material parameters description
 - Surface quality
 - Up to 3 technologiesaffecting the surface layer
 - Size effect
- Values in text fields override the selected items in comboboxes
- Activated for LESA method only

Coordinate Systems (COORDSYS)

- New coordinate systems can be defined on basis of other previously defined coordinate systems
- Used both for Isolated Points and the FE-model
- Definition of a new item:
 - the values in the first column (nodes, IPs) override the next positions
 - 3 rows only define the c.s.

Coordinate Systems (COORDSYS)

- Thanks to **Apply to set** buttons the c.ss. can be applied to imported data additionally
- Results, Loads, Node descriptions can be transformed in the View mode to another c.ss.
- Unsolved yet:
 - The results imported to PragTic could be printout in another c.s.
 - A further data_vector descriptor marking the related c.s. has to be implemented in some next PragTic version
 - The results on shell elements can be defined in their native coordinate systems (i.e. cs intrinsic to every particular element). Note that
 - it should not affect the fatigue calculations
 - but it affects transformations between individual c.ss.

Setups of Analyses

(ANA_SETUP)

- Specifies the focus of the calculation: where (localities)

 - on which data (load regimes)
 - by which method (methods)

- Each setup consists of:
 - at least one item from load regimes
 - at least one item from methods
 - at least one set of nodes, elements or isolated points
- Calculations loops
 - for each load regime
 - at each point
 - for each method

Setups of Analyses

(ANA_SETUP)

Replaces the common Run window in PragTic v.0.2betaH

Results of Fatigue Calculation

- Spreadsheet summary of damage and calculation related variables
- Graphical interpretation of results:
 - import back to the original FE-postprocessor
 - export of fatigue results into aFEMAP neutral file (*.neu)
 - export to a batch file that can be imported to Ansys

PragTic's Help

- freely downloadable
- created as a context help
- *.chm version
 - common context manual in Windows
 - started from the PragTic's interface (Help buttons?, Alt+H, F1 key)
- *.html version
 - either for download or accessed via Internet (www.pragtic.com)
 - content coincident to the*.chm version
 - does not have Index, thus any search without knowing the structure is problematic

